Analysis of Black Carbon Concentrations in PM2.5-10 and PM2.5 Fractions by MABI Instrument in Two Urban Areas of Dakar, Senegal
Alassane Traore,
Moustapha Kebe,
Malick Sow,
Vasiliki Vasilatou,
Ababacar Sadikhe Ndao,
Konstantinos Eleftheriadis
Issue:
Volume 7, Issue 2, December 2023
Pages:
23-30
Received:
Aug. 29, 2023
Accepted:
Sep. 19, 2023
Published:
Oct. 08, 2023
Abstract: Black carbon (BC) is a particular pollutant that absorbs visible light and can intervene in the climatic change with irradiance. The sources of BC emissions are known, such as incomplete combustion of fossil fuels and biomass burning. Our study focuses on two sites Hlm and Yoff in Dakar, Senegal in order to determine the mass absorption coefficient of BC in our polycarbonate nucleopore filters from November 2018 to October 2019 so as to collect PM2.5 and PM2.5-10 we face in our two study sites using MABI instrument. In addition, we investigate the source apportionment of black carbon in PM2.5 fraction. We observe that the mass absorption coefficient of PM2.5 is higher than that of PM2.5-10. The average concentration of BC at Hlm and Yoff were 1.85 ± 0.37 and 2.69 ± 0.54 μg.m−3 respectively, whereas the average concentrations of BCBB were 0.003 ± 0.0007 and 0.08 ± 0.01 μg.m−3, respectively and for BCFF were 1.85 ± 0.37 and 2.61 ± 0.53μg.m−3. The BC from at Yoff has two compounds with 2.97% of Biomass burning and 97, 03% of Fossil fuels in contrast to Hlm site the black carbon was mainly composed of fossil fuels in Dakar, the fossil fuels are mainly source of the black carbon.
Abstract: Black carbon (BC) is a particular pollutant that absorbs visible light and can intervene in the climatic change with irradiance. The sources of BC emissions are known, such as incomplete combustion of fossil fuels and biomass burning. Our study focuses on two sites Hlm and Yoff in Dakar, Senegal in order to determine the mass absorption coefficient...
Show More
Research Article
Köppen–Geiger Climate Classification in the Pannonian Basin According to SSP5-8.5 Scenario
Issue:
Volume 7, Issue 2, December 2023
Pages:
31-49
Received:
Sep. 25, 2023
Accepted:
Oct. 13, 2023
Published:
Oct. 28, 2023
DOI:
10.11648/j.ijaos.20230702.12
Downloads:
Views:
Abstract: The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the period 1960-1990 years of the last century, the dominant climate type was warm summer humid continental climate (Dfb) with 74% and 98% presences in the region according Kottek and Peel, respectively. The results show that the change of this climate type to the humid subtropical climate type (Cfa) began in the first half of the 21st century. The complete dominance of humid subtropical climate type in the most areas of the Pannonian Basin characterized the second half of the 21st century. Also, results show the creation of a warm summer Mediterranean climate type (Csa), which according to certain simulations, is present from 10% to 30% on average in the region. In the central part of the region, a cold desert climate type (Bsk) is formed with approximately 6% presences in the region. This creation of climate types in some parts of the region shows that in the second half of 21st century, drier and a warmer climate are expected.
Abstract: The Köppen–Geiger climate classification is used to determine climate types in region of Pannonian Basin with data from the sixth phase of the Coupled Model Intercomparison Project. The study covers a period from years 2021 until 2100, and it shows how certain climate types are changing in percentage in thirty-year averages for six periods. In the ...
Show More